# Part 1 – Linear Programming Problem A A confectioner sells two types of nut mixtures. The standard-mixture package contains 100 g of cashews and 200…

Part 1 – Linear Programming Problem A

A confectioner sells two types of nut mixtures. The standard-mixture package contains 100 g of cashews and 200 g of peanuts and

sells of $1.95. The deluxe-mixture package contains 150 g of cashews and 50 g of peanuts and sells for $2.25. The confectioner

has 15 kg of cashews and 20 kg of peanuts available. On the basis of past sales, the confectioner needs to have at least as many

standard as deluxe packages available. How many bags of each mixture should she package to maximize her revenue?

For this problem we will let x represent the number of standard-mixture packages and let y represent the number of deluxe-mixture packages. The values of

x and y that will maximize her revenue depend on the amount of cashews and peanuts available for use. These are known as constraints as they constrain the possible values of the variables.

The problem also states that she needs to have at least as many standard as deluxe packages available so we need x>y⇒y <x.